- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Basov, D N (1)
-
Bernevig, B Andrei (1)
-
Graf, David (1)
-
Herzog-Arbeitman, Jonah (1)
-
Katsnelson, M I (1)
-
Lee, Seng Huat (1)
-
Mao, Zhiqiang (1)
-
Millis, Andrew J (1)
-
Moon, Seongphill (1)
-
Ozerov, Mykhaylo (1)
-
Queiroz, Raquel (1)
-
Rudenko, A N (1)
-
Shao, Yinming (1)
-
Smirnov, Dmitry (1)
-
Sun, Zhiyuan (1)
-
Wang, Jie (1)
-
Zhu, Yanglin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Topological semimetals with massless Dirac and Weyl fermions represent the forefront of quantum materials research. In two dimensions, a peculiar class of fermions that are massless in one direction and massive in the perpendicular direction was predicted 16 years ago. These highly exotic quasiparticles—the semi-Dirac fermions—ignited intense theoretical and experimental interest but remain undetected. Using magneto-optical spectroscopy, we demonstrate the defining feature of semi-Dirac fermions— scaling of Landau levels—in a prototypical nodal-line metal ZrSiS. In topological metals, including ZrSiS, nodal lines extend the band degeneracies from isolated points to lines, loops, or even chains in the momentum space. With calculations and theoretical modeling, we pinpoint the observed semi-Dirac spectrum to the crossing points of nodal lines in ZrSiS. Crossing nodal lines exhibit a continuum absorption spectrum but with singularities that scale as at the crossing. Our work sheds light on the hidden quasiparticles emerging from the intricate topology of crossing nodal lines and highlights the potential to explore quantum geometry with linear optical responses. Published by the American Physical Society2024more » « less
An official website of the United States government
